Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Biotechnol Biofuels Bioprod ; 17(1): 55, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643207

RESUMO

BACKGROUND: The saprophytic filamentous fungus Trichoderma reesei represents one of the most prolific cellulase producers. The bulk production of lignocellulolytic enzymes by T. reesei not only relies on the efficient transcription of cellulase genes but also their efficient secretion after being translated. However, little attention has been paid to the functional roles of the involved secretory pathway in the high-level production of cellulases in T. reesei. Rab GTPases are key regulators in coordinating various vesicle trafficking associated with the eukaryotic secretory pathway. Specifically, Rab7 is a representative GTPase regulating the transition of the early endosome to the late endosome followed by its fusion to the vacuole as well as homotypic vacuole fusion. Although crosstalk between the endosomal/vacuolar pathway and the secretion pathway has been reported, the functional role of Rab7 in cellulase production in T. reesei remains unknown. RESULTS: A TrRab7 was identified and characterized in T. reesei. TrRab7 was shown to play important roles in T. reesei vegetative growth and vacuole morphology. Whereas knock-down of Trrab7 significantly compromised the induced production of T. reesei cellulases, overexpression of the key transcriptional activator, Xyr1, restored the production of cellulases in the Trrab7 knock-down strain (Ptcu-rab7KD) on glucose, indicating that the observed defective cellulase biosynthesis results from the compromised cellulase gene transcription. Down-regulation of Trrab7 was also found to make T. reesei more sensitive to various stresses including carbon starvation. Interestingly, overexpression of Snf1, a serine/threonine protein kinase known as an energetic sensor, partially restored the cellulase production of Ptcu-rab7KD on Avicel, implicating that TrRab7 is involved in an energetic adaptation to carbon starvation which contributes to the successful cellulase gene expression when T. reesei is transferred from glucose to cellulose. CONCLUSIONS: TrRab7 was shown to play important roles in T. reesei development and a stress response to carbon starvation resulting from nutrient shift. This adaptation may allow T. reesei to successfully initiate the inducing process leading to efficient cellulase production. The present study provides useful insights into the functional involvement of the endosomal/vacuolar pathway in T. reesei development and hydrolytic enzyme production.

2.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449343

RESUMO

AIMS: This study aimed to investigate the changes of cell membrane structure and function of Issatchenkia terricola under citric acid by performing physiological analysis. METHODS AND RESULTS: The membrane integrity, surface hydrophobicity, structure, fluidity, apoptosis, and fatty acid methyl esters composition of I. terricola WJL-G4 cells were determined by propidium iodide staining, microbial adhesion to hydrocarbon test, transmission electron microscopy analysis, fluorescence anisotropy, flow cytometry, and gas chromatography-mass, respectively. The results showed that with the increasing of citric acid concentrations, the cell vitality, membrane integrity, and fluidity of I. terricola reduced; meanwhile, apoptosis rate, membrane permeable, hydrophobicity, and ergosterol contents augmented significantly. Compared to control, the activities of Na+, K+-ATPase, and Ca2+, Mg2+-ATPase increased by 3.73-fold and 6.70-fold, respectively, when citric acid concentration increased to 20 g l-1. The cells cracked and their cytoplasm effused when the citric acid concentration reached 80 g l-1. CONCLUSIONS: I. terricola could successfully adjust its membrane structure and function below 60 g l-1 of citric acid. However, for citric acid concentrations above 80 g l-1, its structure and function were dramatically changed, which might result in reduced functionality.


Assuntos
Estruturas da Membrana Celular , Ácido Cítrico , Pichia , Ácido Cítrico/farmacologia , Ácidos Graxos/farmacologia , Membrana Celular , Fluidez de Membrana
3.
J Agric Food Chem ; 72(10): 5391-5402, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427803

RESUMO

α-Glucanotransferases of the CAZy family GH70 convert starch-derived donors to industrially important α-glucans. Here, we describe characteristics of a novel GtfB-type 4,6-α-glucanotransferase of high enzyme activity (60.8 U mg-1) from Limosilactobacillus reuteri N1 (LrN1 GtfB), which produces surprisingly large quantities of soluble protein in heterologous expression (173 mg pure protein per L of culture) and synthesizes the reuteran-like α-glucan with (α1 → 6) linkages in linear chains and branch points. Protein structural analysis of LrN1 GtfB revealed the potential crucial residues at subsites -2∼+2, particularly H265, Y214, and R302, in the active center as well as previously unidentified surface binding sites. Furthermore, molecular dynamic simulations have provided unprecedented insights into linkage specificity hallmarks of the enzyme. Therefore, LrN1 GtfB represents a potent enzymatic tool for starch conversion, and this study promotes our knowledge on the structure-function relationship of GH70 GtfB α-glucanotransferases, which might facilitate the production of tailored α-glucans by enzyme engineering in future.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Limosilactobacillus reuteri , Simulação de Dinâmica Molecular , Glucanos/química , Amido/metabolismo , Relação Estrutura-Atividade
5.
Biotechnol Biofuels Bioprod ; 16(1): 161, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891680

RESUMO

BACKGROUND: The well-known industrial fungus Trichoderma reesei has an excellent capability of secreting a large amount of cellulases and xylanases. The induced expression of cellulase and xylanase genes is tightly controlled at the transcriptional level. However, compared to the intensive studies on the intricate regulatory mechanism of cellulase genes, efforts to understand how xylanase genes are regulated are relatively limited, which impedes the further improvement of xylanase production by T. reesei via rational strain engineering. RESULTS: To identify transcription factors involved in regulating xylanase gene expression in T. reesei, yeast one-hybrid screen was performed based on the promoters of two major extracellular xylanase genes xyn1 and xyn2. A putative transcription factor named XTR1 showing significant binding capability to the xyn1 promoter but not that of xyn2, was successfully isolated. Deletion of xtr1 significantly increased the transcriptional level of xyn1, but only exerted a minor promoting effect on that of xyn2. The xylanase activity was increased by ~ 50% with XTR1 elimination but the cellulase activity was hardly affected. Subcellular localization analysis of XTR1 fused to a green fluorescence protein demonstrated that XTR1 is a nuclear protein. Further analyses revealed the precise binding site of XTR1 and nucleotides critical for the binding within the xyn1 promoter. Moreover, competitive EMSAs indicated that XTR1 competes with the essential transactivator XYR1 for binding to the xyn1 promoter. CONCLUSIONS: XTR1 represents a new transcriptional repressor specific for controlling xylanase gene expression. Isolation and functional characterization of this new factor not only contribute to further understanding the stringent regulatory network of xylanase genes, but also provide important clues for boosting xylanase biosynthesis in T. reesei.

6.
J Am Chem Soc ; 145(43): 23670-23680, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857274

RESUMO

Executing glycan editing at a molecular level not only is pivotal for the elucidation of complicated mechanisms involved in glycan-relevant biological processes but also provides a promising solution to potentiate disease therapy. However, the precision control of glycan modification or glyco-editing on a selected glycoprotein is by far a grand challenge. Of note is to preserve the intact cellular glycan landscape, which is preserved after editing events are completed. We report herein a versatile, traceless glycan modification methodology for customizing the glycoforms of targeted proteins (subtypes), by orchestrating chemical- and photoregulation in a protein-selective glycoenzymatic system. This method relies on a three-module, ligand-photocleavable linker-glycoenzyme (L-P-G) conjugate. We demonstrated that RGD- or synthetic carbohydrate ligand-containing conjugates (RPG and SPG) would not activate until after the ligand-receptor interaction is accomplished (chemical regulation). RPG and SPG can both release the glycoenzyme upon photoillumination (photoregulation). The adjustable glycoenzyme activity, combined with ligand recognition selectivity, minimizes unnecessary glycan editing perturbation, and photolytic cleavage enables precise temporal control of editing events. An altered target protein turnover and dimerization were observed in our system, emphasizing the significance of preserving the native physiological niche of a particular protein when precise modification on the carbohydrate epitope occurs.


Assuntos
Carboidratos , Polissacarídeos , Ligantes , Polissacarídeos/química , Glicoproteínas/química
7.
J Dent ; 138: 104733, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783373

RESUMO

OBJECTIVE: To investigate the cross-linking and protective effect of artemisinin (ART), dihydroartemisinin (DHA), and artesunate (AST) on collagen fibers of demineralized dentin surface. METHODS: Molecular docking was used to predict potential interactions of ART, DHA, and AST with dentin type I collagen. Human third molars without caries were completely demineralized and treated with different solutions for 1 min. The molecular interactions and cross-linking degree of ART and its derivatives with dentin collagen were evaluated by FTIR spectroscopy, total extractable protein content, and a ninhydrin assay. Scanning electron microscopy, hydroxyproline release, and ultimate microtensile strength tests (µUTS) were employed to confirm the mechanical properties and anti-collagenase degradation properties of dentin collagen fibers. RESULTS: ART, DHA, and AST combined with dentin type I collagen mainly through hydrogen bonding and hydrophobic interactions, and the cross-linking reaction sites were mainly C=O and CN functional groups. Compared to the control group, ART and its derivatives significantly increased the degree of cross-linking. Additionally, significant increases were observed in resistance to enzymatic digestion and mechanical properties of the artemisinin and its derivatives group. CONCLUSION: ART, DHA, and AST could cross-link with demineralized dentin collagen, through improving the mechanical properties and anti-collagenase degradation properties. CLINICAL SIGNIFICANCE: The study endorses the potential use of ART and its derivatives as a prospective collagen cross-linking agent for degradation-resistant and long-period dentin bonding in composite resin restorations.


Assuntos
Artemisininas , Colagem Dentária , Humanos , Colágeno Tipo I , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/análise , Reagentes de Ligações Cruzadas/química , Simulação de Acoplamento Molecular , Estudos Prospectivos , Resistência à Tração , Colágeno/farmacologia , Colágeno/química , Colagenases/análise , Colagenases/farmacologia , Artemisininas/farmacologia , Artemisininas/análise , Dentina , Colagem Dentária/métodos , Adesivos Dentinários/farmacologia , Adesivos Dentinários/química
8.
Opt Lett ; 48(20): 5285-5288, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831848

RESUMO

Imaging through a scattering medium is of great significance in many areas. Especially, speckle correlation imaging has been valued for its noninvasiveness. In this work, we report a deep learning solution that incorporates the physical model and an additional regularization for high-fidelity speckle correlation imaging. Without large-scale data to train, the physical model and regularization prior provide a correct direction for neural network to precisely reconstruct hidden objects from speckle under different scattering scenarios and noise levels. Experimental results demonstrate that the proposed method presents a significant advance in improving generalization and combating the invasion of noise.

9.
Int J Biol Macromol ; 252: 126452, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619677

RESUMO

The transglucosidase activity of GH31 α-glucosidases is employed to catalyze the synthesis of prebiotic isomaltooligosaccharides (IMOs) using the malt syrup prepared from starch as substrate. Continuous mining for new GH31 α-glucosidases with high stability and efficient transglucosidase activity is critical for enhancing the supply and quality of IMO preparations. In the present study, two α-glucosidases (MT31α1 and MT31α2) from Myceliophthora thermophila were explored for biochemical characterization. The optimum pH and temperature of MT31α1 and MT31α2 were determined to be pH 4.5 and 65 °C, and pH 6.5 and 60 °C, respectively. Both MT31α1 and MT31α2 were shown to be stable in the pH range of 3.0 to 10.0. MT31α1 displayed a high thermostability, retaining 60 % of activity after incubation for 24 h at 55 °C. MT31α1 is highly active on substrates with all types of α-glucosidic linkages. In contrast, MT31α2 showed preference for substrates with α-(1→3) and α-(1→4) linkages. Importantly, MT31α1 was able to synthesize IMOs and the conversion rate of maltose into the main functional IMOs components reached over 40 %. Moreover, MT31α2 synthesizes glucooligosaccharides with (consecutive) α-(1→3) linkages. Taken together, MT31α1 and MT31α2, showing distinct substrate and product specificity, hold clear potential for the synthesis of prebiotic glucooligosaccharides.


Assuntos
Sordariales , alfa-Glucosidases , alfa-Glucosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Sordariales/metabolismo , Maltose/metabolismo , Especificidade por Substrato
10.
Mol Med Rep ; 28(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37594052

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the cell migration and invasion assay data shown in Fig. 5C were strikingly similar to data appearing in different form in other articles by different authors at different research institutes. Owing to the fact that the contentious data in the above article were already under consideration for publication, or had already been published, prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 19: 1903­1910, 2019; DOI: 10.3892/mmr.2019.9826].

11.
J Agric Food Chem ; 71(31): 11993-12003, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37523749

RESUMO

To achieve cost-effective production of lignocellulolytic enzymes for biorefinery processes, engineering transcription factors represents a powerful strategy to boost cellulase and xylanase in Trichoderma reesei. In this study, a novel mutation (R434L) in xylanase regulator 1 (Xyr1) was identified based on the yeast one-hybrid screening system. The point mutation was located in the middle homology region of Xyr1 with unclear functions, indicating a significant role for this domain in tuning Xyr1 transactivation. When constitutively expressed in T. reesei Δxyr1 (OEXR434L), Xyr1R434L led to highly improved production of both cellulases and xylanases on glucose compared with a strain similarly expressing Xyr1 (OEX). The respective 0.8- and 0.7-fold increases in extracellular pNPCase and xylanolytic activity were further verified to result from the greatly elevated transcription of major cellulase and xylanase genes in OEXR434L. Moreover, the saccharification efficiency of corn stover with OEXR434L enzyme cocktails was enhanced by 21% compared with that of OEX.


Assuntos
Celulase , Celulases , Trichoderma , Celulase/genética , Celulase/metabolismo , Glucose , Regiões Promotoras Genéticas , Celulases/genética , Mutação , Trichoderma/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
12.
BMC Med Educ ; 23(1): 119, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36803238

RESUMO

OBJECTIVE: To investigate the role of standard patients (SPs) and examiners as assessors for scoring in the dental objective structured clinical examination (OSCE) system and to evaluate the scoring differences between them. METHODS: We developed the doctor-patient communication and clinical examination station in the OSCE system. The examination time of this station was 10 min, and the examination institution wrote the script and recruited SPs. A total of 146 examinees who received standardized resident training at the Nanjing Stomatological Hospital, Medical School of Nanjing University between 2018 and 2021 were assessed. They were scored by SPs and examiners according to the same scoring rubrics. Subsequently, the SPSS software was used to analyze the examination results of different assessors and evaluate the consistency. RESULTS: The average score of all examinees provided by SPs and examiners was 90.45 ± 3.52 and 91.53 ± 4.13, respectively. The consistency analysis showed that the intraclass correlation coefficient was 0.718, which was indicative of medium consistency. CONCLUSION: Our findings showed that SPs could be used directly as assessors, as they could provide a simulated and realistic clinical setting and create favorable conditions for comprehensive competence training and improvement for medical students.


Assuntos
Competência Clínica , Avaliação Educacional , Humanos , Avaliação Educacional/métodos , Exame Físico , Faculdades de Medicina , Pacientes
13.
J Healthc Eng ; 2023: 7139560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818382

RESUMO

Objective: To explore a centralized approach to build test sets and assess the performance of an artificial intelligence medical device (AIMD) which is intended for computer-aided diagnosis of diabetic retinopathy (DR). Method: A framework was proposed to conduct data collection, data curation, and annotation. Deidentified colour fundus photographs were collected from 11 partner hospitals with raw labels. Photographs with sensitive information or authenticity issues were excluded during vetting. A team of annotators was recruited through qualification examinations and trained. The annotation process included three steps: initial annotation, review, and arbitration. The annotated data then composed a standardized test set, which was further imported to algorithms under test (AUT) from different developers. The algorithm outputs were compared with the final annotation results (reference standard). Result: The test set consists of 6327 digital colour fundus photographs. The final labels include 5 stages of DR and non-DR, as well as other ocular diseases and photographs with unacceptable quality. The Fleiss Kappa was 0.75 among the annotators. The Cohen's kappa between raw labels and final labels is 0.5. Using this test set, five AUTs were tested and compared quantitatively. The metrics include accuracy, sensitivity, and specificity. The AUTs showed inhomogeneous capabilities to classify different types of fundus photographs. Conclusions: This article demonstrated a workflow to build standardized test sets and conduct algorithm testing of the AIMD for computer-aided diagnosis of diabetic retinopathy. It may provide a reference to develop technical standards that promote product verification and quality control, improving the comparability of products.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Inteligência Artificial , Algoritmos , Diagnóstico por Computador/métodos , Fotografação/métodos , Computadores
14.
Appl Environ Microbiol ; 89(1): e0142122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602369

RESUMO

The filamentous fungus Trichoderma reesei is one of the most prolific cellulase producers and has been established as a model microorganism for investigating mechanisms modulating eukaryotic gene expression. Identification and functional characterization of transcriptional regulators involved in complex and stringent regulation of cellulase genes are, however, not yet complete. Here, a Zn(II)2Cys6-type transcriptional factor TAM1 that is homologous to Aspergillus nidulans TamA involved in nitrogen metabolism, was found not only to regulate ammonium utilization but also to control cellulase gene expression in T. reesei. Whereas Δtam1 cultivated with peptone as a nitrogen source did not exhibit a growth defect that was observed on ammonium, it was still significantly compromised in cellulase biosynthesis. The absence of TAM1 almost fully abrogated the rapid cellulase gene induction in a resting-cell-inducing system. Overexpression of gdh1 encoding the key ammonium assimilatory enzyme in Δtam1 rescued the growth defect on ammonium but not the defect in cellulase gene expression. Of note, mutation of the Zn(II)2Cys6 DNA-binding motif of TAM1 hardly affected cellulase gene expression, while a truncated ARE1 mutant lacking the C-terminal 12 amino acids that are required for the interaction with TAM1 interfered with cellulase biosynthesis. The defect in cellulase induction of Δtam1 was rescued by overexpression of the key transactivator for cellulase gene, XYR1. Our results thus identify a nitrogen metabolism regulator as a new modulator participating in the regulation of induced cellulase gene expression. IMPORTANCE Transcriptional regulators are able to integrate extracellular nutrient signals and exert a combinatorial control over various metabolic genes. A plethora of such factors therefore constitute a complex regulatory network ensuring rapid and accurate cellular response to acquire and utilize nutrients. Despite the in-depth mechanistic studies of functions of the Zn(II)2Cys6-type transcriptional regulator TamA and its orthologues in nitrogen utilization, their involvement in additional physiological processes remains unknown. In this study, we demonstrated that TAM1 exerts a dual regulatory role in mediating ammonium utilization and induced cellulase production in the well known cellulolytic fungus Trichoderma reesei, suggesting a potentially converged regulatory node between nitrogen utilization and cellulase biosynthesis. This study not only contributes to unveiling the intricate regulatory network underlying cellulase gene expression in cellulolytic fungus but also helps expand our knowledge of fungal strategies to achieve efficient and coordinated nutrient acquisition for rapid propagation.


Assuntos
Celulase , Hypocreales , Trichoderma , Celulase/genética , Celulase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hypocreales/genética , Expressão Gênica , Trichoderma/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
15.
J Dent ; 129: 104411, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626977

RESUMO

OBJECTIVES: The objective of this study is to value the long-term antibacterial capability and adhesive properties of one-step self-etching dental adhesive containing silver nanoparticles (AgNPs) synthesized in situ. METHODS: One-step self-etching adhesives with various weight percentages of silver 2-ethylhezanoate (0%, 0.05%, 0.10%, and 0.20%) were obtained by in-situ synthesis; the sizes and distribution of the AgNPs in resin were observed. The antibacterial effects of dentin-resin specimens were assessed by various test methods after being aged for 1 week to 1 year. The microtensile bond strength (µTBS) and interfacial nanoleakage (NL) were evaluated using extracted human teeth after being aged for 1 day and 1 year. RESULTS: Uniform distribution of AgNPs in resin was observed in all experimental groups, and the average size was 4.71 nm-4.81 nm. All groups containing AgNPs showed significant antibacterial differences from the control group (P<0.05) over the ageing of 1 year. Although the increase of concentration tended to improve antibacterial activity, significant differences were not observed between the 0.10% and 0.20% groups (P>0.05). No significant differences were observed between all experimental groups and the control group in µTBS testing and NL testing at 1-day and 1-year time points (P>0.05). CONCLUSIONS: 0.10% AgNPs synthesized in situ might be appropriate to impart a long-term antibacterial ability to the one-step self-etching adhesive, without affecting its adhesive performance. CLINICAL SIGNIFICANCE: This study suggests that in-situ synthesis of AgNPs is an effective method to improve the antibacterial ability of dental adhesives with the potential to inhibit secondary caries.


Assuntos
Colagem Dentária , Nanopartículas Metálicas , Humanos , Idoso , Prata/farmacologia , Colagem Dentária/métodos , Cimentos Dentários/farmacologia , Cimentos de Resina/química , Adesivos Dentinários/farmacologia , Adesivos Dentinários/química , Antibacterianos/farmacologia , Resistência à Tração , Teste de Materiais , Dentina/química
16.
Crit Rev Food Sci Nutr ; 63(21): 5247-5267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34907830

RESUMO

Polyphenols exhibit various beneficial biological activities and represent very promising candidates as active compounds for food industry. However, the low solubility, poor stability and low bioavailability of polyphenols have severely limited their industrial applications. Enzymatic glycosylation is an effective way to improve the physicochemical properties of polyphenols. As efficient transglucosidases, glycoside hydrolase family 70 (GH70) glucansucrases naturally catalyze the synthesis of polysaccharides and oligosaccharides from sucrose. Notably, GH70 glucansucrases show broad acceptor substrate promiscuity and catalyze the glucosylation of a wide range of non-carbohydrate hydroxyl group-containing molecules, including benzenediol, phenolic acids, flavonoids and steviol glycosides. Branching sucrase enzymes, a newly established subfamily of GH70, are shown to possess a broader acceptor substrate binding pocket that acts efficiently for glucosylation of larger size polyphenols such as flavonoids. Here we present a comprehensive review of glucosylation of polyphenols using GH70 glucansucrase and branching sucrases. Their catalytic efficiency, the regioselectivity of glucosylation and the structure of generated products are described for these reactions. Moreover, enzyme engineering is effective for improving their catalytic efficiency and product specificity. The combined information provides novel insights on the glucosylation of polyphenols by GH70 glucansucrases and branching sucrases, and may promote their applications.


Assuntos
Glicosídeo Hidrolases , Polifenóis , Sacarase/química , Sacarase/metabolismo , Flavonoides
17.
Bioresour Technol ; 370: 128520, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565817

RESUMO

To reduce the high cost of (hemi)cellulase production in lignocellulose biorefining, it is important to develop strategies to enhance enzyme productivity from economic and also readily manipulatable carbon sources. In this study, an artificial transcription factor XT was designed by fusing the DNA binding domain of Xyr1 to the transactivation domain of Tmac1. When overexpressed in Trichoderma reesei QM9414 Δxyr1, the XT recombinant strain (OEXT) greatly improved (hemi)cellulase production on repressing glucose compared with QM9414 on Avicel with 1.7- and 8.2-fold increases in pNPCase and xylanase activity, respectively. Both activities were even higher (0.9- and 33.8-fold higher, respectively) than the recombinant strain similarly overexpressing Xyr1. The dramatically enhanced xylanase activities in OEXT resulted from the elevated expression of various hemicellulases in the secretome. Moreover, the enzyme cocktail from OEXT improved the saccharification efficiency toward corn stover by 60% compared with enzymes from QM9414 with equal volume loading.


Assuntos
Celulase , Trichoderma , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Celulase/metabolismo , Glucose/metabolismo , Trichoderma/metabolismo
18.
ACS Synth Biol ; 12(1): 238-248, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36520033

RESUMO

Engineering dynamic control of gene expression is desirable because many engineered functions interfere with endogenous cellular processes that have evolved to facilitate growth and survival. Minimizing conflict between growth and production phases can therefore improve product titers in microbial cell factories. We developed an autoinduced gene expression system by rewiring the Saccharomyces cerevisiae pheromone response pathway. To ameliorate growth reduction due to the early onset response at low population densities, α-pheromone of Kluyveromyces lactis (Kα) instead of S. cerevisiae (Sα) was expressed in mating type "a" yeast. Kα-induced expression of pathway genes was further enhanced by the transcriptional activator Gal4p expressed under the control of the pheromone-responsive FUS1 promoter (Pfus1). As a demonstration, the engineered circuit combined with the deletion of the endogenous galactose metabolic pathway genes was applied to the production of human milk oligosaccharides, 2'-fucosyllactose (2'-FL) and 3-fucosllactose (3-FL). The engineered strains produced 3.37 g/L 2'-FL and 2.36 g/L 3-FL on glucose with a volumetric productivity of 0.14 and 0.03 g/L·h-1 in batch flask cultivation, respectively. These represented 147 and 153% increases over the control strains on galactose wherein the respective pathway genes are expressed under GAL promoters only. Further fed-batch fermentation achieved titers of 32.05 and 20.91 g/L for 2' and 3-FL, respectively. The genetic program developed here thus represents a promising option for implementing dynamic regulation in yeast and could be used for the production of biochemicals that may place a heavy metabolic burden on cell growth.


Assuntos
Percepção de Quorum , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Percepção de Quorum/genética , Feromônios , Galactose/metabolismo , Oligossacarídeos , Engenharia Metabólica
19.
Front Public Health ; 10: 1071673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568775

RESUMO

This study aimed at implementing practice to build a standardized protocol to test the performance of computer-aided detection (CAD) algorithms for pulmonary nodules. A test dataset was established according to a standardized procedure, including data collection, curation and annotation. Six types of pulmonary nodules were manually annotated as reference standard. Three specific rules to match algorithm output with reference standard were applied and compared. These rules included: (1) "center hit" [whether the center of algorithm highlighted region of interest (ROI) hit the ROI of reference standard]; (2) "center distance" (whether the distance between algorithm highlighted ROI center and reference standard center was below a certain threshold); (3) "area overlap" (whether the overlap between algorithm highlighted ROI and reference standard was above a certain threshold). Performance metrics were calculated and the results were compared among ten algorithms under test (AUTs). The test set currently consisted of CT sequences from 593 patients. Under "center hit" rule, the average recall rate, average precision, and average F1 score of ten algorithms under test were 54.68, 38.19, and 42.39%, respectively. Correspondingly, the results under "center distance" rule were 55.43, 38.69, and 42.96%, and the results under "area overlap" rule were 40.35, 27.75, and 31.13%. Among the six types of pulmonary nodules, the AUTs showed the highest miss rate for pure ground-glass nodules, with an average of 59.32%, followed by pleural nodules and solid nodules, with an average of 49.80 and 42.21%, respectively. The algorithm testing results changed along with specific matching methods adopted in the testing process. The AUTs showed uneven performance on different types of pulmonary nodules. This centralized testing protocol supports the comparison between algorithms with similar intended use, and helps evaluate algorithm performance.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Computadores
20.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430648

RESUMO

Drought is a misfortune for agriculture and human beings. The annual crop yield reduction caused by drought exceeds the sum of all pathogens. As one of the gatekeepers of China's "granary", rice is the most important to reveal the key drought tolerance factors in rice. Rice seedlings of Nipponbare (Oryza sativa L. ssp. Japonica) were subjected to simulated drought stress, and their root systems were analyzed for the non-targeted metabolome and strand-specific transcriptome. We found that both DEGs and metabolites were enriched in purine metabolism, and allantoin accumulated significantly in roots under drought stress. However, few studies on drought tolerance of exogenous allantoin in rice have been reported. We aimed to further determine whether allantoin can improve the drought tolerance of rice. Under the treatment of exogenous allantoin at different concentrations, the drought resistant metabolites of plants accumulated significantly, including proline and soluble sugar, and reactive oxygen species (ROS) decreased and reached a significant level in 100 µmol L-1. To this end, a follow-up study was identified in 100 µmol L-1 exogenous allantoin and found that exogenous allantoin improved the drought resistance of rice. At the gene level, under allantoin drought treatment, we found that genes of scavenge reactive oxygen species were significantly expressed, including peroxidase (POD), catalase (CATA), ascorbate peroxidase 8 (APX8) and respiratory burst oxidase homolog protein F (RbohF). This indicates that plants treated by allantoin have better ability to scavenge reactive oxygen species to resist drought. Alternative splicing analysis revealed a total of 427 differentially expressed alternative splicing events across 320 genes. The analysis of splicing factors showed that gene alternative splicing could be divided into many different subgroups and play a regulatory role in many aspects. Through further analysis, we restated the key genes and enzymes in the allantoin synthesis and catabolism pathway, and found that the expression of synthetase and hydrolase showed a downward trend. The pathway of uric acid to allantoin is completed by uric acid oxidase (UOX). To find out the key transcription factors that regulate the expression of this gene, we identified two highly related transcription factors OsERF059 and ONAC007 through correlation analysis. They may be the key for allantoin to enhance the drought resistance of rice.


Assuntos
Alantoína , Oryza , Estresse Fisiológico , Humanos , Alantoína/metabolismo , Alantoína/farmacologia , Seguimentos , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Ácido Úrico/metabolismo , Metaboloma , Fenômenos Fisiológicos Vegetais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...